Positions:
Phone:(+86)731-84615236
Fax:(+86)731-84612685
E-mail:mwang@isa.ac.cn, wing_mail@hotmail.com
1. Yi S., Zhang X., Zhang J., Ma Z., Wang R., Wu D., Wei Z., Tan Z., Zhang B. Wang M. (*) Brittle Culm 15 mutation alters carbohydrate composition, degradation and methanogenesis of rice straw during in vitro ruminal fermentation. Frontiers in Plant Science 2022.13.
2. Tian X., Gao C., Hou Z., Wang R., Zhang X., Li Q., Wei Z., Wu D. Wang M. (*) Comparisons of Ramie and Corn Stover Silages: Effects on Chewing Activity, Rumen Fermentation, Microbiota and Methane Emissions in Goats. Fermentation 2022. 8, 432.
3. Li Q.S., Wang R., Ma Z.Y., Zhang X.M., Jiao J.Z., Zhang Z.G., Ungerfeld E.M., Yi K.L., Zhang B.Z., Long L., Long Y., Tao Y., Huang T., Greening C., Tan Z.L. Wang M. (*) Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. The ISME Journal,2022. 16, 2535–46
4. Wang R, Bai Z, Chang J, Li Q, Hristov AN, Smith P, Yin Y, Tan Z, Wang M. (*). China’s low-emission pathways toward climate-neutral livestock production for animal-derived foods. The Innovation 2022;3(2):100220.
5. Zhang M, Wang R, Wu T, Yang Y, He Z, Ma Z, Tan Z, Lin B, Wang M. (*). Comparisons of Corn Stover Silages after Fresh- or Ripe-Corn Harvested: Effects on Digestibility and Rumen Fermentation in Growing Beef Cattle. Animals 2022;12(10):1248.
6. Ma ZY, Zhou JW, Yi SY, Wang M. (*), Tan ZL. In vitro Inoculation of Fresh or Frozen Rumen Fluid Distinguishes Contrasting Microbial Communities and Fermentation Induced by Increasing Forage to Concentrate Ratio. Frontiers in Nutrition 2022;8.
7. Adebayo Arowolo M, Zhang XM, Wang M. (*), Wang R, Wen JN, Hao LZ, He JH, Shen WJ, Ma ZY, Tan ZL. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique. Journal of Dairy Science 2022;105(1):231-41.
8. Xie, F., Jin, W., Si, H., Yuan, Y., Tao, Y., Liu, J., Wang, X., Yang, C., Li, Q., Yan, X., Lin, L., Jiang, Q., Zhang, L., Guo, C., Greening, C., Heller, R., Guan, L.L., Pope, P.B., Tan, Z., Zhu, W., Wang, M. (*), Qiu, Q., Li, Z., Mao, S. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome, 2021. 9(1), 137.
9. Wang, R., Wang M(*)., Lin, B., Ungerfeld, E.M., Ma, Z.Y., Wu, T.T., Wen, J.N., Zhang, X.M., Deng, J.P., Tan, Z.L. 2021. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Animal Feed Science and Technology, 278, 114980.
10. Wang R, Wang M(*), Lin B, Ma ZY, Ungerfeld EM, Wu TT, Wen JN, Zhang XM, Deng JP, Tan ZL. Association of fibre degradation with ruminal dissolved hydrogen in growing beef bulls fed with two types of forages. British Journal of Nutrition 2021, 125, 601-610.
11. Wang R, Gao C, Wang M(*), Zhang XM, Ma ZY, Wu DQ, Wei ZS, Li ZC, Gao S, Tan ZL. Evaluation of response time in monitoring system on the accuracy of recording individual feeding behavior and feed intake in dairy cows. Animal Feed Science and Technology 2021;279:115026.
12. Wang F, Harindintwali JD, Yuan Z, Wang M(共同第一), Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, et al. Technologies and perspectives for achieving carbon neutrality. The Innovation 2021;2(4):100180.
13. Zhang XM, Smith ML, Gruninger RJ, Kung L, Jr, Vyas D, McGinn SM, Kindermann M, Wang M, Tan ZL, Beauchemin KA. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. Journal of Animal Science 2021;99(4).
14. Zhang X.M., Gruninger R.J., Alemu A.W., Wang M. (*), Tan Z.L., Kindermann M., Beauchemin K.A. 3-Nitrooxypropanol supplementation had little impact on fiber degradation and microbial colonization of forage particles evaluated using the in situ ruminal incubation technique. Journal of Dairy Science. 2020.103:8986–8997.
15. Ma, Z.Y., Zhang, X.M., Wang, R., Wang, M. (*), Liu, T., Tan, Z.L. 2020. Effects of Chemical and Mechanical Lysis on Microbial DNA Yield, Integrity, and Downstream Amplicon Sequencing of Rumen Bacteria and Protozoa. Frontiers in Microbiology, 11:2812.
16. Zhang, X.M., Wang M(*), Yu, Q., Ma, Z.Y., Beauchemin, K.A., Wang, R., Wen, J.N., Lukuyu, B.A., Tan, Z.L. Liquid hot water treatment of rice straw enhances anaerobic degradation and inhibits methane production during in vitro ruminal fermentation. Journal of Dairy Science. 2020.103:4252-4261.
17. Arowolo, M. A., Yang S., Wang M(*),He J. H., Wang C., Wang R., Wen J. N., Ma Z. Y., and Tan Z. L.. The effect of forage theoretical cut lengths on chewing activity, rumen fermentation, dissolved gases, and methane emissions in goats. Animal Feed Science and Technology 2020. 263:114454.
18. Teklebrhan T, Wang R, Wang M(*), Wen JN, Li Wei T, Zhang XM, Ma ZY, Tan ZL. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Animal Feed Science and Technology 2020:114314.
19. Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., Wang, M. 2020. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14(S1), s2-s16.
20. Kang J, Wang R, Tang S, Wang M(*), Tan Z, Bernard LA. 2020. Chemical composition and in vitro ruminal fermentation of pigeonpea and mulberry leaves. Agroforestry Systems. 94:1521–1528.
21. Liu, S., Zhang, Z., Hailemariam, S., Zheng, N., Wang, M(*), Zhao, S., Wang, J. 2020. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals, 10(3), 368.
22. Zhang XM, Medrano RF, Wang M(*), Beauchemin KA, Ma ZY, Wang R, Wen JN, Lukuyu BA, Tan ZL, He JH. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats. Journal of Animal Science 2019. 97:4999–5008
23. Wang R, Wang M (*), Zhang XM, Yang HM, Wen JN, Ma ZY, Feng BL, Deng JP, Tan ZL. Technical note: Evaluation of interval between measurements and calculation method for the quantification of enteric methane emissions measured by respiration chamber. Journal of Dairy Science 2019;102(7):6242-6247.
24. Ma ZY, Zhang XM, Wang M (*), Wang R, Jiang ZY, Tan ZL, Gao FX, Muhammed A. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows. Journal of Dairy Science 2019;102(6):5566-5576.
25. Wang R, Si HB, Wang M(*), Lin B(*), Deng JP, Tan LW, Liu WX, Sun XZ, Teklebrhan T, Tan ZL. Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures. Animal Feed Science and Technology 2019;252:74-82.
26. Zhang, X, Medrano, RF, Wang, M (*), Beauchemin, KA, Ma, Z, Wang, R, Wen, J, Bernard, LA, Tan Z. 2019, Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. Journal of Animal Science and Biotechnology: 10:6.
27. Wang R, Wang M (*), Zhang XM, Wen JN, Ma ZY, Long DL, Deng JP(*), Tan ZL. Effects of rumen cannulation on dissolved gases and methanogen community in dairy cows. Journal of Dairy Science. 2019. 102(3):2275-82.
28. Wang M, Wang R, Liu M, Beauchemin KA, Sun XZ, Tang SX, Jiao JZ, Tan ZL, He ZX. Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats. Animal. 2019. 13(5):975-982.
29. He, ZX, Qiao JY, Yan QX, Tan ZL,Wang M (*).Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.Animal. 2019. 13:90-97.
30. He ZX, Qiao JY, Tan ZL, Wang M (*). 2018. Carbon-13 stable isotope analysis reveals the existence but insignificance of ruminal methanogenic pathway from acetate in a batch culture system. Animal Feed Science and Technology 246:46-51.
31. Wang R, Wang M (*), Ungerfeld EM, Zhang XM, Long DL, Mao HX, Deng JP, Bannink A, Tan ZL. 2018. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. Journal of Dairy Science101: 9789-9799.
32. Zhang X; Wang M(*);Wang R; Ma Z; Long D; Mao H; Wen J; Bernard LA; Beauchemin KA; Tan Z; 2018 Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture. Journal of the Science of Food and Agriculture 98: 5205-5211.(封面论文)
33. Ma, ZY; Wang, R; Wang, M(*); Zhang, XM; Mao, HX; Tan, ZL. Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows. Journal of Dairy Science, 2018 101(6):5153-5158.
34. Wang, M; Wang, R; Zhang, XM; Ungerfeld, EM; Long, DL; Mao, HX; Jiao, JZ; Beauchemin, KA; Tan, ZL(*). Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. British Journal of Nutrition, 2017.9, 118(6): 401~410
35. Wang, Z; Elekwachi, CO; Jiao, JZ; Wang, M(*); Tang, SX; Zhou, CS; Tan, ZL; Forster, RJ. Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Scientific Reports, 2017.3.24, 7
36. Wang, M; Wang, R; Janssen, PH; Zhang, XM; Sun, XZ; Pacheco, D; Tan, ZL(*)Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids inthe rumen of dairy cows. Journal of Animal Science, 2016, 94: 1159~1169.
37. Wang, M; Wang, R; Xie, TY; Janssen, PH; Sun, XZ; Beauchemin, KA; Tan, ZL(*); Gao, M. Shifts in rumen fermentation and microbiotaare associated with dissolved ruminal hydrogen concentrations in lactatingdairy cows fed different types of carbohydrates. Journal of Nutrition, 2016.9.1, 146: 1714~1721
38. Wang, M; Ungerfeld, EM; Wang, R; Zhou, CS; Basang, ZZ; Ao, SM; Tan, ZL(*). Supersaturation ofdissolved hydrogen and methane in rumen of Tibetan Sheep. Frontiers in Microbiology, 2016, 7(850)
39. Wang, M; Wang, R; Tang, SX; Tan, ZL(*); Zhou, CS; Han, XF. Comparisons of manual and automated incubation systems: Effects of venting procedures on in vitro ruminalfermentation. Livestock Science, 2016, 184: 41~45
40. Wang, M; Wang, R; Yang, S; Deng, JP; Tang, SX; Tan, ZL(*).Effects of three methane mitigation agents onparameters of kinetics of total and hydrogen gas production, ruminalfermentation and hydrogen balance using in vitro technique. Animal Science Journal, 2016, 87: 224~232.
41. Wang, M; Wang, R; Sun, XZ; Chen, L; Tang, SX; Zhou, CS; Han, XF; Kang, JH; Tan, ZL(*); He, ZX. A mathematical model to describe the diurnalpattern of enteric methane emissions from non-lactating dairy cows post-feeding. Animal Nutrition, 2015.12.1, 1(4): 329~338
42. Wang M; Sun XZ; Janssen PH; Tang SX; Tan ZL(*) Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures Animal Feed Science and Technology, 2014, 194: 1~11.
43. Wang M,Janssen PH,Sun XZ,Muetzel S,Tavendale M,Tan ZL(*),Pacheco D,A mathematical model to describe in vitro kinetics of H2 gas accumulation,Animal Feed Science and Technology,2013,184(1-4):1-16。
44. Wang M,D. PACHECO,X. Z. SUN,Tang sx,Tan zl(*),Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation,Animal,2013,7:6:920-929。
45. Wang, M,Zhao, XG,Liao, HY,Tan, ZL(*),Tang, SX,Sun, ZH,Zhou, CS,Han, XF,Effects of rice straw particle size on digesta particle size distribution, nitrogen metabolism, blood biochemical parameters, microbial amino acid composition and intestinal amino acid digestibility in goats,Animal Science Journal,2011,82(1):78-85。
46. Wang M,Tan ZL(*),Tang SX,Modeling in vitro gas production kinetics: Derivation of Logistic–Exponential (LE) equations and comparison of models,Animal Feed Science and Technology,2011,165(3-4):137-150。
47. Wang, M,Zhao, X. G.,Tan, Z. L.(*),Tang, S. X.,Zhou, C. S.,Sun, Z. H.,Han, X. F.,Wang, C. W.,Effects of Increasing Level of Dietary Rice Straw on Chewing Activity, Ruminal Fermentation and Fibrolytic Enzyme Activity in Growing Goats,Asian-Australasian Journal of Animal Sciences,2010,23(8):1022-1027。
48. Wang, M,Jiang, J.,Tan, Z. L.(*),Tang, S. X.,Sun, Z. H.,Han, X. F.,In situ Ruminal Crude Protein and Starch Degradation of Three Classes of Feedstuffs in Goats,Journal of Applied Animal Research,2009,36(1):23-28。
49. Zhao, X. G.(#),Wang, M.(#),Tan, Z. L.(*),Tang, S. X.,Sun, Z. H.,Zhou, C. S.,Han, X. F.,Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats,Asian-Australasian Journal of Animal Sciences,2009,22(9):1256-1266。
50. Wang, M,Hu, Y,Tan, ZL(*),Tang, SX,Sun, ZH,Han, XF,In situ ruminal phosphorus degradation of selected three classes of feedstuffs in goats,Livestock Science,2008,117(2-3):233-237。